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Our Goal
Fundamentals of Diferential Equations is designed to serve the needs of a one-semester 
course in basic theory as well as applications of differential equations. The flexibility of the 
text provides the instructor substantial latitude in designing a syllabus to match the emphasis 
of the course. Sample syllabi are provided in this preface that illustrate the inherent flexibility 
of this text to balance theory, methodology, applications, and numerical methods, as well as 
the incorporation of commercially available computer software for this course.

New to This Edition
•	 This text now features a MyMathLab course with approximately 750 algorithmic online 

homework exercises, tutorial videos, and the complete eText. Please see the “Technology 
and Supplements” section below for more details.

•	 In the Laplace Transforms chapter (7), the treatments of discontinuous and periodic func-
tions are now divided into two sections that are more appropriate for 50 minute lectures: 
Section 7.6 “Transforms of Discontinuous Functions” (page 383) and Section 7.7 “Trans-
forms of Periodic and Power Functions” (page 392).

•	 New examples have been added dealing with variation of parameters, Laplace transforms, 
the Gamma function, and eigenvectors (among others).

•	 New problems added to exercise sets deal with such topics as axon gating variables and 
oscillations of a helium-filled balloon on a cord. Additionally, novel problems accompany 
the new projects, focusing on economic models, disease control, synchronization, signal 
propagation, and phase plane analyses of neural responses. We have also added a set of 
Review Problems for Chapter 1 (page 29).

•	 Several pedagogical changes were made including amplification of the distinction between 
phase plane solutions and actual trajectories in Chapter 5 and incorporation of matrix and 
Jacobian formulations for autonomous systems.

•	 A new appendix lists commercial software and freeware for direction fields, phase por-
traits, and numerical methods for solving differential equations. (Appendix G, page A-17.)

•	 “The 2014–2015 Ebola Epidemic” is a new Project in Chapter 5 that describes a sys-
tem of differential equations for modelling for the spread of the disease in West Africa. 
The model incorporates such features as contact tracing, number of contacts, likelihood of 
infection, and efficacy of isolation. See Project F, page 314.

•	 A new project in Chapter 1 called “Applications to Economics” deals with models for an 
agrarian economy as well as the growth of capital. See Project C, page 35.

xiii

Preface
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•	 A new project in Chapter 4 called “Gravity Train” invites to reader to utilize differential 
equations in the design of an underground tunnel from Moscow to St. Petersburg, Russia, 
using gravity for propulsion. See Project H, page 240.

•	 Phase-locked loops constitute the theme of a new project in Chapter 5 that utilizes dif-
ferential equations to analyze a technique for measuring or matching high frequency radio 
oscillations. See Project G, page 317.

•	 A new Project in Chapter 10 broadens the analysis of the wave and heat equations to 
explore the telegrapher’s and cable equations. See Project E, page 637.

Prerequisites
While some universities make linear algebra a prerequisite for differential equations, many 
schools (especially engineering) only require calculus. With this in mind, we have designed 
the text so that only Chapter 6 (Theory of Higher-Order Linear Differential Equations) and 
Chapter 9 (Matrix Methods for Linear Systems) require more than high school level linear 
algebra. Moreover, Chapter 9 contains review sections on matrices and vectors as well as spe-
cific references for the deeper results used from the theory of linear algebra. We have also 
written Chapter 5 so as to give an introduction to systems of differential equations—including 
methods of solving, phase plane analysis, applications, numerical procedures, and Poincaré 
maps—that does not require a background in linear algebra.

Sample Syllabi
As a rough guide in designing a one-semester syllabus related to this text, we provide three 
samples that can be used for a 15-week course that meets three hours per week. The first 
emphasizes applications and computations including phase plane analysis; the second is 
designed for courses that place more emphasis on theory; and the third stresses methodology 
and partial differential equations. Chapters 1, 2, and 4 provide the core for any first course. The 
rest of the chapters are, for the most part, independent of each other. For students with a back-
ground in linear algebra, the instructor may prefer to replace Chapter 7 (Laplace Transforms) 
or Chapter 8 (Series Solutions of Differential Equations) with sections from Chapter 9 (Matrix 
Methods for Linear Systems).
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Projects At the end of each chapter are projects relating to the material covered in the chapter. Sev-
eral of them have been contributed by distinguished researchers. A project might involve a 
more challenging application, delve deeper into the theory, or introduce more advanced top-
ics in differential equations. Although these projects can be tackled by an individual student, 
classroom testing has shown that working in groups lends a valuable added dimension to the 
learning experience. Indeed, it simulates the interactions that take place in the professional 
arena.

Choice of 
Applications

Because of syllabus constraints, some courses will have little or no time for sections (such as 
those in Chapters 3 and 5) that exclusively deal with applications. Therefore, we have made 
the sections in these chapters independent of each other. To afford the instructor even greater 
flexibility, we have built in a variety of applications in the exercises for the theoretical sec-
tions. In addition, we have included many projects that deal with such applications.

Flexible  
Organization

Most of the material is modular in nature to allow for various course configurations and 
emphasis (theory, applications and techniques, and concepts).

Optional Use 
of Computer  

Software

The availability of computer packages such as Mathcad®, Mathematica®, MATLAB®, and 
Maple™ provides an opportunity for the student to conduct numerical experiments and tackle 
realistic applications that give additional insights into the subject. Consequently, we have 
inserted several exercises and projects throughout the text that are designed for the student to 
employ available software in phase plane analysis, eigenvalue computations, and the numerical 
solutions of various equations.

Retained Features

Methods, 
Computations, 
and Applications

Theory and 
Methods (linear 
algebra prerequisite)

Methods and 
Partial Diferential 
Equations

Week Sections Sections Sections

  1 1.1, 1.2, 1.3 1.1, 1.2, 1.3 1.1, 1.2, 1.3
  2 1.4, 2.2 1.4, 2.2, 2.3 1.4, 2.2
  3 2.3, 2.4, 3.2 2.4, 3.2, 4.1 2.3, 2.4
  4 3.4, 3.5, 3.6 4.2, 4.3, 4.4 3.2, 3.4
  5 3.7, 4.1 4.5, 4.6 4.2, 4.3
  6 4.2, 4.3, 4.4 4.7, 5.2, 5.3 4.4, 4.5, 4.6
  7 4.5, 4.6, 4.7 5.4, 6.1 4.7, 5.1, 5.2
  8 4.8, 4.9 6.2, 6.3, 7.2 7.1, 7.2, 7.3
  9 4.10, 5.1, 5.2 7.3, 7.4, 7.5 7.4, 7.5
10 5.3, 5.4, 5.5 7.6, 7.7, 7.8 7.6, 7.7
11 5.6, 5.7, 7.2 8.2, 8.3 7.8, 8.2
12 7.3, 7.4, 7.5 8.4, 8.6, 9.1 8.3, 8.5, 8.6
13 7.6, 7.7, 7.8 9.2, 9.3 10.2, 10.3
14 8.1, 8.2, 8.3 9.4, 9.5, 9.6 10.4, 10.5
15 8.4, 8.6 9.7, 9.8 10.6, 10.7

In response to the perception that many of today’s students’ skills in integration have gotten 
rusty by the time they enter a differential equations course, we have included an appendix 
offering a quick review of the basic methods for integrating functions analytically.

Review of 
Integration
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Chapter  
Summary and 

Review Problems

All of the main chapters contain a set of review problems along with a synopsis of the major 
concepts presented.

Computer 
Graphics

Most of the figures in the text were generated via computer. Computer graphics not only ensure 
greater accuracy in the illustrations, they demonstrate the use of numerical experimentation in 
studying the behavior of solutions.

Proofs While more pragmatic students may balk at proofs, most instructors regard these justifications 
as an essential ingredient in a textbook on differential equations. As with any text at this level, 
certain details in the proofs must be omitted. When this occurs, we flag the instance and refer 
readers either to a problem in the exercises or to another text. For convenience, the end of a 
proof is marked by the symbol ◆.

Linear Theory We have developed the theory of linear differential equations in a gradual manner. In Chapter 4 
(Linear Second-Order Equations) we first present the basic theory for linear second-order 
equations with constant coefficients and discuss various techniques for solving these equa-
tions. Section 4.7 surveys the extension of these ideas to variable-coefficient second-order 
equations. A more general and detailed discussion of linear differential equations is given in 
Chapter 6 (Theory of Higher-Order Linear Differential Equations). For a beginning course 
emphasizing methods of solution, the presentation in Chapter 4 may be sufficient and Chapter 6 
can be skipped.

Numerical 
Algorithms

Several numerical methods for approximating solutions to differential equations are presented 
along with program outlines that are easily implemented on a computer. These methods are 
introduced early in the text so that teachers and/or students can use them for numerical experi-
mentation and for tackling complicated applications. Where appropriate we direct the student 
to software packages or web-based applets for implementation of these algorithms.

Exercises An abundance of exercises is graduated in difficulty from straightforward, routine problems 
to more challenging ones. Deeper theoretical questions, along with applications, usually 
occur toward the end of the exercise sets. Throughout the text we have included problems and 
projects that require the use of a calculator or computer. These exercises are denoted by the 
symbol .

Laplace  
Transforms

We provide a detailed chapter on Laplace transforms (Chapter 7), since this is a recurring topic 
for engineers. Our treatment emphasizes discontinuous forcing terms and includes a section on 
the Dirac delta function.

Motivating 
Problem

Most chapters begin with a discussion of a problem from physics or engineering that motivates 
the topic presented and illustrates the methodology.

Historical 
Footnotes

Throughout the text historical footnotes are set off by colored daggers (†). These footnotes 
typically provide the name of the person who developed the technique, the date, and the con-
text of the original research.

Technical 
Writing Exercises 

Communication skills are, of course, an essential aspect of professional activities. Yet few 
texts provide opportunities for the reader to develop these skills. Thus, we have added at the 
end of most chapters a set of clearly marked technical writing exercises that invite students 
to make documented responses to questions dealing with the concepts in the chapter. In so 
doing, students are encouraged to make comparisons between various methods and to present 
examples that support their analysis.
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Partial  
Differential  
Equations 

An introduction to this subject is provided in Chapter 10, which covers the method of separa-
tion of variables, Fourier series, the heat equation, the wave equation, and Laplace’s equation. 
Examples in two and three dimensions are included.

Review of Algebraic 
Equations and 

Matrices

The chapter on matrix methods for linear systems (Chapter 9) begins with two (optional) intro-
ductory sections reviewing the theory of linear algebraic systems and matrix algebra.

Technology and Supplements
MyMathLab® Online Course (access code required) Built around Pearson’s best-selling 
content, MyMathLab is an online homework, tutorial, and assessment program designed to 
work with this text to engage students and improve results. MyMathLab can be successfully 
implemented in any classroom environment—lab-based, hybrid, fully online, or traditional.

MyMathLab’s online homework offers students immediate feedback and tutorial assistance 
that motivates them to do more, which means they retain more knowledge and improve their 
test scores. Used by more than 37 million students worldwide, MyMathLab delivers consis-
tent, measurable gains in student learning outcomes, retention, and subsequent course success. 
Visit www.mymathlab.com/results to learn more.

Vibrations Motivation for Chapter 4 on linear differential equations is provided in an introductory sec-
tion describing the mass–spring oscillator. We exploit the reader’s familiarity with common 
vibratory motions to anticipate the exposition of the theoretical and analytical aspects of linear 
equations. Not only does this model provide an anchor for the discourse on constant-coefficient 
equations, but a liberal interpretation of its features enables us to predict the qualitative behav-
ior of variable-coefficient and nonlinear equations as well.

Phase Plane Chapter 5 describes how qualitative information for two-dimensional systems can be gleaned 
about the solutions to intractable autonomous equations by observing their direction fields and 
critical points on the phase plane. With the assistance of suitable software, this approach pro-
vides a refreshing, almost recreational alternative to the traditional analytic methodology as we 
discuss applications in nonlinear mechanics, ecosystems, and epidemiology.

Power Series Power series solutions is a topic that occasionally causes student anxiety. Possibly, this is due 
to inadequate preparation in calculus where the more subtle subject of convergent series is 
(frequently) covered at a rapid pace. Our solution has been to provide a graceful initiation into 
the theory of power series solutions with an exposition of Taylor polynomial approximants 
to solutions, deferring the sophisticated issues of convergence to later sections. Unlike many 
texts, ours provides an extensive section on the method of Frobenius (Section 8.6) as well as a 
section on finding a second linearly independent solution. While we have given considerable 
space to power series solutions, we have also taken great care to accommodate the instructor 
who only wishes to give a basic introduction to the topic. An introduction to solving differen-
tial equations using power series and the method of Frobenius can be accomplished by cover-
ing the materials in Sections 8.1, 8.2, 8.3, and 8.6.
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•	 Learning Catalyticstm is a student response tool that uses students’ smartphones, tablets, 
or laptops to engage them in more interactive tasks and thinking. Learning Catalytics fosters 
student engagement and peer-to-peer learning with real-time analytics.

•	 Instructional videos are available as learning aids within exercises and for self-study within 
the Multimedia Library. The Guide to Video-Based Assignments makes it easy to assign 
videos for homework by showing which MyMathLab exercises correspond to each video.

•	 The complete eText is available to students through their MyMathLab courses for the 
lifetime of the edition, giving students unlimited access to the eText within any course 
using that edition of the textbook.

Learning and 
Teaching Tools

•	 Exercises with immediate feedback—Nearly 750 assignable exercises are based on the 
textbook exercises and regenerate algorithmically to give students unlimited opportunity 
for practice and mastery. MyMathLab provides helpful feedback when students enter 
incorrect answers and includes optional learning aids including Help Me Solve This, View 
an Example, videos, and an eText. 
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•	 Accessibility and achievement go hand in hand. MyMathLab is compatible with the JAWS 
screen reader, and enables multiple-choice and free-response problem types to be read and 
interacted with via keyboard controls and math notation input. MyMathLab also works with 
screen enlargers, including ZoomText, MAGic, and SuperNova. And, all MyMathLab videos 
have closed-captioning. More information is available at mymathlab.com/accessibility.

•	 A comprehensive gradebook with enhanced reporting functionality allows you to effi-
ciently manage your course.
	 The Reporting Dashboard provides insight to view, analyze, and report learning outcomes. 

Student performance data is presented at the class, section, and program levels in an acces-
sible, visual manner so you’ll have the information you need to keep your students on track.

	 Item Analysis tracks class-wide understanding of particular exercises so you can refne 
your class lectures or adjust the course/department syllabus. Just-in-time teaching has 
never been easier!

MyMathLab comes from an experienced partner with educational expertise and an eye  
on the future. Whether you are just getting started with MyMathLab, or have a question  
along the way, we’re here to help you learn about our technologies and how to incorporate 
them into your course. To learn more about how MyMathLab helps students succeed, visit 
mymathlab.com or contact your Pearson rep.

MathXL® is the homework and assessment engine that runs MyMathLab. (MyMathLab is 
MathXL plus a learning management system.) MathXL access codes are also an option.

Student’s Solutions 
Manual

ISBN-10: 0321977211 | ISBN-13: 9780321977212
Contains complete worked-out solutions to odd-numbered exercises, providing students with 
an excellent study tool. Available in print and for download within MyMathLab.

Instructor’s 
Solutions Manual 

(downloadable)

ISBN-10: 0134659244 | ISBN-13: 9780134659244
Contains answers to all even-numbered exercises, detailed solutions to the even-numbered prob-
lems in several of the main chapters, and additional projects. Available for download in the Pearson 
Instructor Resource Center www.pearsonhighered.com/irc as well as within MyMathLab.

MATLAB, Maple, 
and Mathematica 

Manuals 
(downloadable)

By Thomas W. Polaski (Winthrop University), Bruno Welfert (Arizona State University), and 
Maurino Bautista (Rochester Institute of Technology), respectively. These manuals contain a col-
lection of instructor tips, worksheets, and projects to aid instructors in integrating computer alge-
bra systems into their courses. Complete manuals are available for instructor download within 
MyMathLab. Student worksheets and projects available for download within MyMathLab.
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CHAPTER 

1 Introduction

In the sciences and engineering, mathematical models are developed to aid in the understanding 
of physical phenomena. These models often yield an equation that contains some derivatives 
of an unknown function. Such an equation is called a diferential equation. Two examples of 
models developed in calculus are the free fall of a body and the decay of a radioactive substance.

In the case of free fall, an object is released from a certain height above the ground and 
falls under the force of gravity.† Newton’s second law, which states that an object’s mass times 
its acceleration equals the total force acting on it, can be applied to the falling object. This 
leads to the equation (see Figure 1.1)

m 
d2h

dt2 = -mg ,

where m is the mass of the object, h is the height above the ground, d2h>dt2 is its acceleration, g 
is the (constant) gravitational acceleration, and -mg is the force due to gravity. This is a difer-
ential equation containing the second derivative of the unknown height h as a function of time.

Fortunately, the above equation is easy to solve for h. All we have to do is divide by m and 
integrate twice with respect to t. That is,

d2h

dt2 = -g ,

so

dh
dt

= -gt + c1

and

h = h1t2 =
-gt2

2
+ c1t + c2 .

1.1  Background

1

†We are assuming here that gravity is the only force acting on the object and that this force is constant. More general 
models would take into account other forces, such as air resistance.

h-mg

Figure 1.1 Apple in free fall
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2          Chapter 1    Introduction

We will see that the constants of integration, c1 and c2, are determined if we know the initial 
height and the initial velocity of the object. We then have a formula for the height of the object 
at time t.

In the case of radioactive decay (Figure 1.2), we begin from the premise that the rate of 
decay is proportional to the amount of radioactive substance present. This leads to the equation

dA
dt

= -kA ,    k 7 0 ,

where A17  02 is the unknown amount of radioactive substance present at time t and k is the 
proportionality constant. To solve this diferential equation, we rewrite it in the form

1
A

 dA = -k dt

and integrate to obtain

L
 

 

1
A

 dA = L
 

 
-k dt

ln A + C1 = -kt + C2 .

Solving for A yields

A = A1t2 = e ln A = e-kt eC2 - C1 = Ce-kt,

where C is the combination of integration constants eC2 - C1. The value of C, as we will see later, 
is determined if the initial amount of radioactive substance is given. We then have a formula 
for the amount of radioactive substance at any future time t.

Even though the above examples were easily solved by methods learned in calculus, they 
do give us some insight into the study of diferential equations in general. First, notice that 
the solution of a diferential equation is a function, like h1t2 or A1t2, not merely a number. 
Second, integration† is an important tool in solving diferential equations (not surprisingly!). 
Third, we cannot expect to get a unique solution to a diferential equation, since there will 
be arbitrary “constants of integration.” The second derivative d2h>dt2 in the free-fall equation 
gave rise to two constants, c1 and c2, and the frst derivative in the decay equation gave rise, 
ultimately, to one constant, C.

Whenever a mathematical model involves the rate of change of one variable with respect 
to another, a diferential equation is apt to appear. Unfortunately, in contrast to the examples for 
free fall and radioactive decay, the diferential equation may be very complicated and difcult 
to analyze.

†For a review of integration techniques, see Appendix A.

A

Figure 1.2 Radioactive decay
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Section 1.1    Background          3

Diferential equations arise in a variety of subject areas, including not only the physi-
cal sciences but also such diverse felds as economics, medicine, psychology, and operations 
research. We now list a few specifc examples.

1.	 In banking practice, if P1t2 is the number of dollars in a savings bank account that 
pays a yearly interest rate of r % compounded continuously, then P satisfes the dif-
ferential equation

(1)	
dP
dt

=
r

100
 P  , t in years.

2.	 A classic application of diferential equations is found in the study of an electric cir-
cuit consisting of a resistor, an inductor, and a capacitor driven by an electromotive 
force (see Figure 1.3). Here an application of Kirchhof’s laws† leads to the equation

(2)	 L 
d2q

dt2 + R 
dq

dt
+

1
C

 q = E1t2 ,

where L is the inductance, R is the resistance, C is the capacitance, E1t2 is the elec-
tromotive force, q1t2 is the charge on the capacitor, and t is the time.

3.	 In psychology, one model of the learning of a task involves the equation

(3) 	
dy>dt

y3>211 - y23>2 =
2p1n

 .

Here the variable y represents the learner’s skill level as a function of time t. The con-
stants p and n depend on the individual learner and the nature of the task.

4.	 In the study of vibrating strings and the propagation of waves, we fnd the partial dif-
ferential equation

(4)	
02u

0 t2 - c2 
02u

0 x2 = 0 ,‡

where t represents time, x the location along the string, c the wave speed, and u the 
displacement of the string, which is a function of time and location.

C

R L

emf

+

-

Figure 1.3 Schematic for a series RLC circuit

†We will discuss Kirchhof’s laws in Section 3.5.
‡Historical Footnote: This partial diferential equation was frst discovered by Jean le Rond d’Alembert (1717–1783) 
in 1747.
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4          Chapter 1    Introduction

To begin our study of diferential equations, we need some common terminology. If an 
equation involves the derivative of one variable with respect to another, then the former is 
called a dependent variable and the latter an independent variable. Thus, in the equation

(5)	
d2x

dt2 + a 
dx
dt

+ kx = 0 ,

t is the independent variable and x is the dependent variable. We refer to a and k as coefcients 
in equation (5). In the equation

(6)	
0u
0x

-
0u
0y

= x - 2y ,

x and y are independent variables and u is the dependent variable.
A diferential equation involving only ordinary derivatives with respect to a single indepen-

dent variable is called an ordinary diferential equation. A diferential equation involving partial 
derivatives with respect to more than one independent variable is a partial diferential equation. 
Equation (5) is an ordinary diferential equation, and equation (6) is a partial diferential equation.

The order of a diferential equation is the order of the highest-order derivatives present in the 
equation. Equation (5) is a second-order equation because d2x>dt2 is the highest-order derivative 
present. Equation (6) is a frst-order equation because only frst-order partial derivatives occur.

It will be useful to classify ordinary diferential equations as being either linear or nonlin-
ear. Remember that lines (in two dimensions) and planes (in three dimensions) are especially 
easy to visualize, when compared to nonlinear objects such as cubic curves or quadric surfaces. 
For example, all the points on a line can be found if we know just two of them. Correspond-
ingly, linear diferential equations are more amenable to solution than nonlinear ones. Observe 
that the equations for lines ax + by = c and planes ax + by + cz = d have the feature that the 
variables appear in additive combinations of their frst powers only. By analogy a linear difer-
ential equation is one in which the dependent variable y and its derivatives appear in additive 
combinations of their frst powers.

More precisely, a diferential equation is linear if it has the format

(7)	 an1x2 
dny

dxn + an - 11x2 
dn − 1y

dxn − 1 + P + a11x2 
dy

dx
+ a01x2y = F1x2 ,

where an1x2, an - 11x2, . . . , a01x2 and F1x2 depend only on the independent variable x. The 
additive combinations are permitted to have multipliers (coefcients) that depend on x; no 
restrictions are made on the nature of this x-dependence. If an ordinary diferential equation is 
not linear, then we call it nonlinear. For example,

d2y

dx2 + y3 = 0

is a nonlinear second-order ordinary diferential equation because of the y3 term, whereas

t3 
dx
dt

= t3 + x

is linear (despite the t3 terms). The equation

d2y

dx2 - y 
dy

dx
= cos x

is nonlinear because of the y dy>dx term.
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Section 1.1    Background          5

Although the majority of equations one is likely to encounter in practice fall into the 
nonlinear category, knowing how to deal with the simpler linear equations is an important frst 
step (just as tangent lines help our understanding of complicated curves by providing local 
approximations).

In Problems 1–12, a diferential equation is given along with 
the feld or problem area in which it arises. Classify each as 
an ordinary diferential equation (ODE) or a partial diferen-
tial equation (PDE), give the order, and indicate the indepen-
dent and dependent variables. If the equation is an ordinary 
diferential equation, indicate whether the equation is linear 
or nonlinear.

1.	 5 
d2x

dt2 + 4 
dx
dt

 +  9x =  2 cos 3t

(mechanical vibrations, electrical circuits, seismology)

2.	
d2y

dx2 - 2x 
dy

dx
+ 2y = 0

(Hermite’s equation, quantum-mechanical harmonic 
oscillator)

3.	
dy

dx
=

y12 - 3x2
x11 - 3y2

(competition between two species, ecology)

4.	
0  

2u

0x2 +
0  

2u

0y2 = 0

(Laplace’s equation, potential theory, electricity, heat, 
aerodynamics)

5.	 y c 1 + ady

dx
b

2

d = C, where C is a constant

(brachistochrone problem,† calculus of variations)

6.	
dx
dt

= k14 - x211 - x2, where k is a constant

(chemical reaction rates)

7.	
dp

dt
= kp1P - p2, where k and P are constants

(logistic curve, epidemiology, economics)

8.	 11 - y 
d2y

dx2 + 2x 
dy

dx
= 0

(Kidder’s equation, fow of gases through a porous 
medium)

9.	 x 
d2y

dx2 +
dy

dx
+ xy = 0

(aerodynamics, stress analysis)

10.	 8
d4y

dx4 = x11 - x2
(defection of beams)

11.	
0N
0  t

=
0  

2N

0  r2 +
1
r
 
0N
0  r

+ kN, where k is a constant

(nuclear fssion)

12.	
d2y

dx2 - 0.111 - y22  
dy

dx
+ 9y = 0

(van der Pol’s equation, triode vacuum tube)

In Problems 13–16, write a diferential equation that fts the 
physical description.

13.	 The rate of change of the population p of bacteria at 
time t is proportional to the population at time t.

14.	 The velocity at time t of a particle moving along a straight 
line is proportional to the fourth power of its position x.

15.	 The rate of change in the temperature T of cofee at 
time t is proportional to the diference between the tem-
perature M of the air at time t and the temperature of the 
cofee at time t.

16.	 The rate of change of the mass A of salt at time t is 
proportional to the square of the mass of salt present 
at time t.

17.	 Drag Race.  Two drivers, Alison and Kevin, are par-
ticipating in a drag race. Beginning from a standing start, 
they each proceed with a constant acceleration. Alison 
covers the last 1>4 of the distance in 3 seconds, whereas 
Kevin covers the last 1>3 of the distance in 4 seconds. 
Who wins and by how much time?

1.1  EXERCISES

†Historical Footnote: In 1630 Galileo formulated the brachistochrone problem 1bráxísto% = shortest, xróno% = time), that is, to determine a 
path down which a particle will fall from one given point to another in the shortest time. It was reproposed by John Bernoulli in 1696 and solved 
by him the following year.
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6          Chapter 1    Introduction

An nth-order ordinary diferential equation is an equality relating the independent variable 
to the nth derivative (and usually lower-order derivatives as well) of the dependent variable. 
Examples are

x2 
d2y

dx2 + x 
dy

dx
+ y = x3 (second-order, x independent, y dependent)

B1 - a d2y

dt2 b - y = 0 (second-order, t independent, y dependent)

d4x

dt4 = xt (fourth-order, t independent, x dependent).

Thus, a general form for an nth-order equation with x independent, y dependent, can be 
expressed as

(1)	 F ax, y, 
dy

dx
, . . . , 

dny

dxn b = 0 ,

where F is a function that depends on x, y, and the derivatives of y up to order n; that is, on x, 
y, . . . , dny>dxn. We assume that the equation holds for all x in an open interval I (a 6 x 6 b, 
where a or b could be infnite). In many cases we can isolate the highest-order term dny>dxn 
and write equation (1) as

(2)	
dny

dx  

n = f  ax, y, 
dy

dx
, . . . , 

dn - 1y

dx  

n - 1 b  ,

which is often preferable to (1) for theoretical and computational purposes.

1.2  Solutions and Initial Value Problems

Explicit Solution

Defnition 1.	 A function f1x2 that when substituted for y in equation (1) [or (2)]  
satisfes the equation for all x in the interval I is called an explicit solution to the  
equation on I.

Show that f1x2 = x2 - x-1 is an explicit solution to the linear equation

(3)	
d2y

dx2 -
2

x2 y = 0 ,

but c1x2 = x3 is not.

Example 1

Solution The functions f1x2 = x2 - x-1, f′1x2 = 2x + x-2, and f″1x2 = 2 - 2x-3 are defned for 
all x ≠ 0. Substitution of f1x2 for y in equation (3) gives

12 - 2x-32 -
2

x2 1x2 - x-12 = 12 - 2x-32 - 12 - 2x-32 = 0 .
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Section 1.2    Solutions and Initial Value Problems          7

Since this is valid for any x ≠ 0, the function f1x2 = x2 - x-1 is an explicit solution to (3) on 
1- ∞ , 02 and also on 10, ∞ 2.

For c1x2 = x3 we have c′1x2 = 3x2, c″1x2 = 6x, and substitution into (3) gives

6x -
2

x2 x3 = 4x = 0 ,

which is valid only at the point x = 0 and not on an interval. Hence c1x2 is not a solution.  ◆

Example 2 Show that for any choice of the constants c1 and c2, the function

f1x2 = c1e
-x + c2e

2x

is an explicit solution to the linear equation

(4)	 y″ - y′ - 2y = 0 .

Solution We compute f′1x2 = -c1e
-x + 2c2e

2x and f″1x2 = c1e
-x + 4c2e

2x. Substitution of f, f′, 
and f″ for y, y′, and y″ in equation (4) yields

1c1e
-x + 4c2e

2x2 - 1-c1e
-x + 2c2e

2x2 - 21c1e
-x + c2e

2x2
= 1c1 + c1 - 2c12e-x + 14c2 - 2c2 - 2c22e2x = 0 .

Since equality holds for all x in 1- ∞ , ∞ 2, then f1x2 = c1e
-x + c2e

2x is an explicit solution to 
(4) on the interval 1- ∞ , ∞ 2 for any choice of the constants c1 and c2.  ◆

As we will see in Chapter 2, the methods for solving diferential equations do not always 
yield an explicit solution for the equation. We may have to settle for a solution that is defned 
implicitly. Consider the following example.

Example 3 Show that the relation

(5)	 y2 - x3 + 8 = 0

implicitly defnes a solution to the nonlinear equation

(6)	
dy

dx
=

3x2

2y

on the interval 12, ∞ 2.
Solution When we solve (5) for y, we obtain y = {2x3 - 8. Let’s try f1x2 = 2x3 - 8 to see if it 

is an explicit solution. Since df>dx = 3x2> 122x3 - 82 , both f and df>dx are defned on 
12, ∞ 2. Substituting them into (6) yields

3x2

22x3 - 8
=

3x2

212x3 - 82  ,

which is indeed valid for all x in 12, ∞ 2. [You can check that c1x2 = -2x3 - 8 is also an 
explicit solution to (6).]  ◆
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8          Chapter 1    Introduction

Implicit Solution

Defnition 2.	 A relation G1x, y2 = 0 is said to be an implicit solution to equation (1) 
on the interval I if it defnes one or more explicit solutions on I.

†See Vector Calculus, 6th ed, by J. E. Marsden and A. J. Tromba (Freeman, San Francisco, 2013).

Example 4 Show that

(7)	 x + y + e xy = 0

is an implicit solution to the nonlinear equation

(8)	 11 + xe xy2  
dy

dx
+ 1 + ye xy = 0 .

Solution First, we observe that we are unable to solve (7) directly for y in terms of x alone. However, for 
(7) to hold, we realize that any change in x requires a change in y, so we expect the relation (7) 
to defne implicitly at least one function y1x2. This is difcult to show directly but can be rigor-
ously verifed using the implicit function theorem† of advanced calculus, which guarantees 
that such a function y1x2 exists that is also diferentiable (see Problem 30).

Once we know that y is a diferentiable function of x, we can use the technique of implicit 
diferentiation. Indeed, from (7) we obtain on diferentiating with respect to x and applying the 
product and chain rules,

d
dx

 1x + y + e xy2 = 1 +
dy

dx
+ e xyay + x 

dy

dx
b = 0

or

11 + xe xy2  
dy

dx
+ 1 + ye xy = 0 ,

which is identical to the diferential equation (8). Thus, relation (7) is an implicit solution on 
some interval guaranteed by the implicit function theorem.  ◆

Example 5 Verify that for every constant C the relation 4x2 - y2 = C is an implicit solution to

(9)	 y 
dy

dx
- 4x = 0 .

Graph the solution curves for C = 0, {1, {4. (We call the collection of all such solutions a 
one-parameter family of solutions.)

Solution When we implicitly diferentiate the equation 4x2 - y2 = C with respect to x, we fnd

8x - 2y 
dy

dx
= 0 ,
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Section 1.2    Solutions and Initial Value Problems          9

which is equivalent to (9). In Figure 1.4 we have sketched the implicit solutions for 
C = 0, {1, {4. The curves are hyperbolas with common asymptotes y = {2x. Notice that 
the implicit solution curves (with C arbitrary) fll the entire plane and are nonintersecting for 
C ≠ 0. For C = 0, the implicit solution gives rise to the two explicit solutions y = 2x and 
y = -2x, both of which pass through the origin.  ◆

For brevity we hereafter use the term solution to mean either an explicit or an implicit 
solution.

In the beginning of Section 1.1, we saw that the solution of the second-order free-fall 
equation invoked two arbitrary constants of integration c1, c2:

h1t2 =
-gt2

2
+ c1t + c2 ,

whereas the solution of the frst-order radioactive decay equation contained a single constant C:

A1t2 = Ce-kt .

It is clear that integration of the simple fourth-order equation

d4y

dx4 = 0

brings in four undetermined constants:

y1x2 = c1x
3 + c2x

2 + c3x + c4 .

It will be shown later in the text that in general the methods for solving nth-order diferential 
equations evoke n arbitrary constants. In most cases, we will be able to evaluate these constants 
if we know n initial values y1x02, y′1x02, . . . , y1n - 121x02.
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Figure 1.4 Implicit solutions 4x2 - y2 = C
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